Posts Tagged ‘Fotodegradação’

E se não houvesse lagos?

13 de janeiro de 2015

Além de servirem para você andar no jet ski do seu primo rico ou para você pescar com o seu pai, para que mais servem os lagos? Os lagos estão presentes na história e no cotidiano de povos de todo o planeta. Eles fornecem alimentos, água, recreação e até inspiração religiosa ao ser humano. Eles também são fundamentais para a vida de um sem número de espécies de plantas, animais e até de seres que a gente nem vê – organismos microscópicos como algas e bactérias. Contudo, existe um aspecto sobre os lagos que pouca gente conhece e que iremos apresentar aqui por meio de um exercício mental. Os lagos são muito importantes para o balanço global de carbono, uma vez que eles podem lançar grandes quantidades de dióxido de carbono para a atmosfera e influenciar no clima do Planeta, como já discutimos no post anterior (“Rios e lagos e o efeito estufa: importantes fontes de gás carbônico para a atmosfera). Agora, vamos imaginar se todos os rios fluíssem direto para o mar, sem nenhum lago no caminho, o que mudaria no fluxo de matéria orgânica no planeta! Aceitam o exercício? Para simplificar a discussão, nós vamos tratar como “lago” qualquer acumulo d’água no continente, incluindo lagoas, represas, lagunas, etc.

Exercício Metal: Experimento de microcosmo - escala experimental = Planeta. (fonte: http://raphalss.files.wordpress.com/2012/05/planeta-terra.jpg)

Exercício Metal: Experimento de microcosmo – escala experimental = Planeta.
(fonte: http://raphalss.files.wordpress.com/2012/05/planeta-terra.jpg)

Alguns cientistas mostraram recentemente que, apesar de sua área superficial reduzida globalmente, os lagos podem emitir quase tanto gás carbônico quanto o que é sequestrado pelos oceanos (ver referências ao final). Isso é bastante surpreendente e revela um papel ignorado até pouco tempo atrás: o dos lagos como biorreatores capazes de processar grandes quantidades de matéria orgânica. Esses ambientes têm se mostrado tipicamente supersaturados, com concentrações de gás carbônico (CO2) maiores do que a atmosfera. A produção desse gás carbônico vem da fotodegradação (degradação de moléculas orgânicas na água pela ação da radiação solar) de compostos orgânicos e da respiração dos seres vivos presentes no lago, com participação importante dos microrganismos responsáveis pela decomposição da matéria orgânica (oxidação biológica da matéria orgânica pela qual o produto final é geralmente o CO2). Tal matéria orgânica pode ter sido formada no próprio lago, pela fixação de gás carbônico pelas algas e macrófitas (plantas aquáticas), mas uma parcela significativa dela tem origem terrestre, chegando aos lagos por meio dos rios ou por percolação após passarem por um processo de decomposição nos solos e nos próprios rios.

Parte da matéria orgânica que é acumulada nos lagos, proveniente da bacia hidrográfica, é considerada refratária, isto é, de difícil decomposição. Ela encontra nos lagos condições necessárias para a finalização do processo de decomposição. Isso acontece principalmente porque, diferentes dos rios, os lagos retêm a água por um período mais longo. É válido especular, portanto, que sem os lagos, essa matéria talvez não tivesse tempo suficiente para processamento e acabaria sendo transportada ao oceano, onde poderia ser parcialmente processada, aumentando a atividade metabólica nesse ecossistema, e, em sua maior parte, estocada no leito do oceano – como acontece com grande parte da matéria que entra nesse ambiente. O processamento que deixou de acontecer nos lagos e que não se completou no oceano, resultaria numa menor emissão de carbono para a atmosfera, que consequentemente teria uma menor quantidade desse elemento.

A alteração no ciclo global do carbono poderia gerar mudanças na temperatura do planeta e até na taxa de produção primária, embora seja difícil prever com exatidão essas mudanças. O fato é que nós abordamos um aspecto bem pontual do papel dos lagos, que tem sido pouco discutido. Mas, se levarmos em conta outros aspectos relevantes, como a contribuição dos lagos para o volume de água evaporada ou para a manutenção da biodiversidade, é inevitável a conclusão de que teríamos um planeta totalmente diferente. É claro que você não precisa se preocupar com um repentino desaparecimento dos lagos. Eles continuarão existindo e desempenhando seus papéis, inclusive seu relevante papel no ciclo do carbono, que é um processo natural, diferentemente, por exemplo, da emissão de carbono pela queima de combustíveis fósseis. Esta última é resultado das nossas atividades e seu controle está em nossas mãos. Como você deve saber, isso está afetando o clima do planeta. Ou será que não é bem assim? Há um post recente neste blog sobre esse tema polêmico. Leia aqui.

 

Nota: Esse é o último artigo da série produzida pelos alunos do curso de Limnologia (2014-2) do Programa de Pós-Gradação em Ecologia da UFRN.

 

Autores:

Pedro Junger (Mestrando; PPG Ecologia – UFRJ)

Barbara Precila Bezerra (Mestranda; PPG Ecologia – UFRN)

Dhalton Ventura (Doutorando; PPG Ecologia – UFRN – Especialista em Recursos Hídricos; Agência Nacional de Águas)

Colaborações:

Rafael de Carvalho (Mestrando; PPG Ecologia e Evolução – UFS)

Luana Rezende (Mestranda; PPG Ecologia e Evolução – UFS

Arthur Cruz (Mestrando; PPG Ecologia e Evolução – UFS)

André M. Amado (UFRN/PPG Ecologia – DOL)

Supervisão:

André M. Amado (UFRN/PPG Ecologia – DOL)

 

Referências:

Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J. & Melack, J. 2007. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 8: 862–870.

Marotta, H., Duarte, C. M., Sobek, S. & Enrich-Prast, A. 2009a. Large CO2 disequilibria in tropical lakes. Global Biogeochemistry Cycles, 23: GB4022.

Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M. Von Wachenfeldt, E. & Weyhenmeyer, G. A. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6): 2298–2314.

Anúncios

Foto-degradação no topo do mundo!

31 de agosto de 2014

Após algumas décadas, os estudos sobre a foto-degradação do carbono orgânico dissolvido (processo de degradação de compostos orgânicos pela ação física da radiação solar) em ambientes aquáticos volta, literalmente, ao topo do mundo.

Na década de 80 chamou-se a atenção para a redução das concentrações de ozônio (O3) na estratosfera. A Camada de Ozônio filtra parte dos raios ultravioleta B (UV-B; 280-320 nm) provenientes do Sol, reduzindo a sua incidência sobre a superfície do Planta Terra. Por isso, a redução da camada de ozônio (resultante da liberação de gases utilizados nos sistemas modernos de refrigeração) teria profundos efeitos danosos à saúde das pessoas, pelo aumento da incidência de problemas como câncer de pele. Iniciou-se assim, uma corrida mundial para reverter esse quadro.

Ao mesmo tempo, como os raios ultravioletas também degradam parte do carbono orgânico dissolvido na água, principalmente aquele formado nos ambientes terrestres, o processo de fotodegradação ganhou destaque entre os cientistas. Pesquisas focaram no papel da fotodegradação para o funcionamento dos ecossistemas (por exemplo sobre o metabolismo microbiano), até seus possíveis efeitos para a emissão de dióxido de carbono (gás carbônico – CO2) para a atmosfera. Por exemplo, além de mineralizar o carbono orgânico formando dióxido de carbono (CO2), a foto-degradação também transforma o carbono alterando a velocidade com que as bactérias heterotróficas (microorganismos recicladores) podem mineralizá-lo (Farjalla et al. 2009).

co2_data_mlo

Gráfico de acúmulo de CO2 na atmosfera (Mauna Loa Observatory (http://www.esrl.noaa.gov/gmd/ccgg/trends/).

Trabalhos recentes demonstraram que os ambientes aquáticos são importantes elementos no ciclo global do carbono, pois transformam, emitem para a atmosfera e transportam para os oceanos muitas toneladas de carbono por ano (Cole et al 2007, Tranvik et al, 2009, Raymond et al 2013). Nesse sentido, diversos estudos avaliaram a importância relativa da fotodegradação e da respiração bacteriana (dois importantes processos de decomposição em ecossistemas aquáticos) para a emissão de CO2 para atmosfera, como contribuintes na intensificação do efeito estufa.

Desenho esquemático: Radiação solar reflete na Terra e emite radiação infravermelha que aquece a atmosfera.

Desenho esquemático: Radiação solar reflete na Terra e emite radiação infravermelha que aquece a atmosfera.

Estudos sugeriram que na da região temperada do Globo (latitudes superiores a 22° N e S), o processo de fotodegradação era pouco relevante (< 10%) para a produção total de CO2 por lagos em comparação com a mineralização pelas bactérias (Jonsson et al 2001). Juntamente com a estabilização da camada de ozônio, a suposta pouca relevância da fotodegradação ajudou a diminuir o interesse no tema. Alguns anos mais tarde, um dos trabalhos da minha dissertação de mestrado (Amado et al 2006) indicou que a fotodegradação poderia ser equivalente à mineralização bacteriana em lagos tropicais da região amazônica. Mesmo assim, desde então, poucos estudos avaliaram a interação da fotodegradação com as emissões de CO2.

Na semana passada (22 de agosto de 2014), a pesquisadora Rose Cory (da Universidade de Michigan) e seus colaboradores publicaram um artigo (Cory et al. 2014) na revista Science, de um estudo de mais de 3 anos de duração sobre a fotodegradação e a degradação bacteriana em diversos ambientes aquáticos no Alaska (ártico). De acordo com esse estudo, nos ambientes aquáticos daquela região de elevadas latitudes, a fotodegradação pode corresponder entre 70 e 95% de todo CO2 produzido nesses ecossistemas, sendo até dezenas de vezes superior à mineralização pelas bactérias. Ao contrariar os paradigmas atuais, esse estudo reabre a discussão sobre o tema. Tendo em vista que o aumento global das temperaturas previsto para as regiões polares deve expor grandes quantidades de matéria orgânica pelo degelo, a fotodegradação deverá ser responsável por emitir grandes quantidades de CO2 para a atmosfera, contribuindo ainda mais para o agravamento do efeito estufa.

Referências:

Amado, A. M., Farjalla, V. F., Esteves, F. D., Bozelli, R. L., Roland, F., & Enrich-Prast, A. (2006). Complementary pathways of dissolved organic carbon removal pathways in clear-water Amazonian ecosystems: photochemical degradation and bacterial uptake. FEMS Microbiology Ecology, 56(1), 8-17.

Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., . . . Melack, J. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1), 171-184.

Cory, R. M., Ward, C. P., Crump, B. C., & Kling, G. W. (2014). Sunlight controls water column processing of carbon in arctic fresh waters. Science, 345(6199), 925-928. doi: 10.1126/science.1253119

Jonsson, A., Meili, M., Bergstrom, A. K., & Jansson, M. (2001). Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Ortrasket, N. Sweden). Limnology and Oceanography, 46(7), 1691-1700.

 

Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., . . . Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355-359. doi: 10.1038/nature12760

Tranvik, L., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., . . . Weyhenmeyer, G. A. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6, part 2), 2298-2314.

 

Autor: André M. Amado (Depto. Oceanografia e Limnologia; PPG Ecologia – UFRN)

Revisão de Língua Portuguesa: Bruna Q. Vargas (Cultura Inglesa, Natal-RN)